Homework 1

1. Estimating $(1-x)$ using $\exp (\cdot)$ function. For $x \in[0,1)$, we know that

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots .
$$

(a) (5 points) Prove that $1-x \leqslant \exp \left(-x-\frac{x^{2}}{2}\right)$. Solution.
(b) (5 points) For $x \in[0,1 / 2]$, prove that

$$
1-x \geqslant \exp \left(-x-x^{2}\right)
$$

Solution.

2. Tight Estimations Provide meaningful upper and lower bounds for the following expressions.
(a) (5 points) $S_{n}=\sum_{i=1}^{\infty} i^{-\frac{13}{11}}$.

Hint: Your upper and lower bounds should be constants.
Solution.
(b) (10 points) $A_{n}=n!$.

Hint: You may want to start by upper and lower bounding $S_{n}=\sum_{i=1}^{n} \ln i$. Solution.
(c) (10 points) $B_{n}=\binom{2 n}{n}$.

Hint: Note that $\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$.
Solution.
3. Understanding Joint Distribution. Ten balls are to be tossed into five bins numbered $\{1,2,3,4,5\}$. Each ball is thrown into a bin uniformly and independently into the bins. For $i \in\{1,2,3,4,5\}$, let X_{i} represent the number of balls that fall into bin i.
(a) (5 points) Find the (marginal) distribution of X_{1} and compute its expected value. Solution.
(b) (3 points) Find the expected value of $X_{1}+X_{2}+X_{3}$. Solution.
(c) (7 points) Find $\operatorname{Pr}\left[\left[X_{1}=4 \mid X_{1}+X_{2}+X_{3}=7\right]\right]$. Solution.

4. Sending one bit.

Alice intends to send a bit $b \in\{0,1\}$ to Bob. When Alice sends the bit, it goes through a series of n relays before reaching Bob. Each relay flips the received bit independently with probability p before forwarding that bit to the next relay.
(a) (5 points) Show that Bob will receive the correct bit with probability

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} p^{2 k} \cdot(1-p)^{n-2 k} .
$$

Hint: Be careful that Alice could be sending either 0 or 1 .

Solution.

(b) (5 points) Let us consider an alternative way to calculate this probability. We say that the relay has bias q if the probability it flips the bit is $(1-q) / 2$. The bias q is a real number between -1 and +1 . Show that sending a bit through two relays with bias q_{1} and q_{2} is equivalent to sending a bit through a single relay with bias $q_{1} \cdot q_{2}$.

Solution.

(c) (5 points) Prove that the probability you receive the correct bit when it passes through n relays is

$$
\frac{1+(1-2 p)^{n}}{2}
$$

Solution.

5. An Useful Estimate.

For an integers n and t satisfying $0 \leqslant t \leqslant n / 2$, define

$$
P_{n}(t)=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{t}{n}\right)
$$

We will estimate the above expression. (Remark: You shall see the usefulness of this estimation in the topic "Birthday Bound" that we shall cover in the forthcoming lectures.)
(a) (13 points) Show that

$$
\exp \left(-\frac{t^{2}}{2 n}-\frac{t}{2 n}-\frac{\Theta\left(t^{3}\right)}{6 n^{2}}\right) \geqslant P_{n}(t) \geqslant \exp \left(-\frac{t^{2}}{2 n}-\frac{t}{2 n}-\frac{\Theta\left(t^{3}\right)}{3 n^{2}}\right) .
$$

Solution.

(b) (2 points) When $t=\sqrt{2 c n}$, where c is a positive constant, the expression above is

$$
P_{n}(t)=\exp (-c-\Theta(1 / \sqrt{n})) .
$$

Solution.

