Homework 1

1. Estimating (1-x) using $\exp(\cdot)$ function. For $x \in [0,1)$, we know that

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \cdots.$$

(a) (5 points) Prove that $1 - x \leq \exp\left(-x - \frac{x^2}{2}\right)$. Solution. (b) (5 points) For $x \in [0, 1/2]$, prove that

$$1 - x \ge \exp\left(-x - x^2\right).$$

- 2. **Tight Estimations** Provide meaningful upper and lower bounds for the following expressions.
 - (a) (5 points) $S_n = \sum_{i=1}^{\infty} i^{-\frac{13}{11}}$. Hint: Your upper and lower bounds should be constants. Solution.

(b) (10 points) $A_n = n!$. Hint: You may want to start by upper and lower bounding $S_n = \sum_{i=1}^n \ln i$. Solution. (c) (10 points) $B_n = \binom{2n}{n}$. Hint: Note that $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$. Solution.

- 3. Understanding Joint Distribution. Ten balls are to be tossed into five bins numbered $\{1, 2, 3, 4, 5\}$. Each ball is thrown into a bin uniformly and independently into the bins. For $i \in \{1, 2, 3, 4, 5\}$, let X_i represent the number of balls that fall into bin i.
 - (a) (5 points) Find the (marginal) distribution of X_1 and compute its expected value. Solution.

(b) (3 points) Find the expected value of $X_1 + X_2 + X_3$. Solution. (c) (7 points) Find $Pr[[X_1 = 4|X_1 + X_2 + X_3 = 7]]$. Solution.

4. Sending one bit.

Alice intends to send a bit $b \in \{0, 1\}$ to Bob. When Alice sends the bit, it goes through a series of n relays before reaching Bob. Each relay flips the received bit independently with probability p before forwarding that bit to the next relay.

(a) (5 points) Show that Bob will receive the correct bit with probability

$$\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} p^{2k} \cdot (1-p)^{n-2k}.$$

Hint: Be careful that Alice could be sending either 0 or 1. Solution.

(b) (5 points) Let us consider an alternative way to calculate this probability. We say that the relay has bias q if the probability it flips the bit is (1 - q)/2. The bias q is a real number between -1 and +1. Show that sending a bit through two relays with bias q_1 and q_2 is equivalent to sending a bit through a single relay with bias $q_1 \cdot q_2$. Solution.

(c) (5 points) Prove that the probability you receive the correct bit when it passes through *n* relays is

$$\frac{1+(1-2p)^n}{2}.$$

5. An Useful Estimate.

For an integers n and t satisfying $0 \leq t \leq n/2$, define

$$P_n(t) = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{t}{n}\right)$$

We will estimate the above expression. (*Remark*: You shall see the usefulness of this estimation in the topic "Birthday Bound" that we shall cover in the forthcoming lectures.)

(a) (13 points) Show that

$$\exp\left(-\frac{t^2}{2n} - \frac{t}{2n} - \frac{\Theta\left(t^3\right)}{6n^2}\right) \ge P_n(t) \ge \exp\left(-\frac{t^2}{2n} - \frac{t}{2n} - \frac{\Theta\left(t^3\right)}{3n^2}\right).$$

(b) (2 points) When $t = \sqrt{2cn}$, where c is a positive constant, the expression above is

$$P_n(t) = \exp\left(-c - \Theta\left(1/\sqrt{n}\right)\right).$$